We have developed a robust high-throughput automated electrophysiology assay using a monoclonal CHO-hNav1.9 cellular reagent suitable for fully supporting a Nav1.9 discovery program.
Ion channels represent 15 – 20% of historic drug approvals and recent drug discovery projects. Many ion channel families (Nav, Cav, TRPx and GABA) are validated as therapeutic targets based on human genetics, animal models and selective pharmacology. However, ion channels are challenging targets requiring expert target class knowledge and specialised screening technology such as automated patch-clamp (APC) electrophysiology.
We have developed a robust high-throughput automated electrophysiology assay using a monoclonal CHO-hNav1.9 cellular reagent suitable for fully supporting a Nav1.9 discovery program.
Metrion and Sophion present findings that determine whether other insoluble salts can act as seal enhancers and how these solution pairs affect the biophysical properties and pharmacology of the investigated ion channels.