Rescue of defective CFTR (dF508) is enhanced by targeting the ubiquitin proteasomal system

Poster Description

The dF508 mutation represents the most common cause underlying cystic fibrosis. The resultant misfolding of the nascent cystic fibrosis transmembrane regulator (CFTR) protein and its subsequent proteasomal degradation lead to a deficiency in functional CFTR channels and Cl- efflux at the apical cell membrane in ducts throughout the body (Veit et al. 2016). Small molecule drugs have been identified that rectify this protein misfolding (‘correctors’) and facilitate channel opening (‘potentiators’), thereby restoring CFTR-mediated Cl- efflux at the apical cell membrane and providing clinical improvement (Hanrahan et al. 2017).

Nevertheless, enhanced efficacy remains a key research goal, and evidence indicates that this could be achieved by combining correctors/potentiators with modulators of the ubiquitin proteasomal system (UPS) that regulates CFTR protein degradation (Borgo et al. 2022). There is growing interest in the development of novel treatments that utilise this dual-target approach; we therefore set out to demonstrate that we could:

  1. Measure currents elicited by wild-type (WT) CFTR in transiently transfected
    CHO-K1 cells using automated patch clamp (APC) electrophysiology.
  2. Use the APC platform to confirm efficacy of CFTR correctors (VX-809,
    VX-445/VX-661) and a potentiator (VX-770) in CHO-K1 cells transiently
    transfected with dF508 CFTR.
  3. Develop a 384-well halide-sensitive YFP assay for assessment of corrector
    efficacy in HEK293 cells transiently transfected with dF508 CFTR.
  4. Use the YFP assay to determine if modulators of the UPS (bortezomib, TAK-243)
    enhance the efficacy of the CFTR corrector VX-809.
Download
Recommended Publications
Latest Publications
Development of Automated Electrophysiology Assays for the Characterisation of Inhibitors Against Human HCN Ion Channels

We demonstrate the generation and validation of a stable CHO-hHCN2 cell line used as a cellular tool in the successful development of hHCN2 automated electrophysiology screening assays.

Development of a High-Throughput Automated Electrophysiology Assay for Human Nav1.9 Inhibitor Screening

We have developed a robust high-throughput automated electrophysiology assay using a monoclonal CHO-hNav1.9 cellular reagent suitable for fully supporting a Nav1.9 discovery program.

View All
Metrion Biosciences is a contract research organisation (CRO) specialising in high-quality preclinical drug discovery services.
magnifier
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram