We demonstrate the generation and validation of a stable CHO-hHCN2 cell line used as a cellular tool in the successful development of hHCN2 automated electrophysiology screening assays.
The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is a new cardiac safety testing proposal sponsored by the FDA to refine the current ICH S7B and E14 guidelines. Two components of CiPA utilise in vitro electrophysiological assays that require validation using a toolbox of compounds with defined clinical proarrhythmic risk. Here we outline our progress to optimise these electrophysiological assays to meet the CiPA goal of predicting human cardiac liability.
We demonstrate the generation and validation of a stable CHO-hHCN2 cell line used as a cellular tool in the successful development of hHCN2 automated electrophysiology screening assays.
We have developed a robust high-throughput automated electrophysiology assay using a monoclonal CHO-hNav1.9 cellular reagent suitable for fully supporting a Nav1.9 discovery program.