Manual patch-clamp technique was used to evaluate channel pharmacology using cells transiently transfected with wild-type and V434L mutant channel.
Atrial fibrillation (AF) is the most common arrhythmia observed in the clinic, considerable effort has been made to identify the cellular mechanisms of AF and develop new safe and effective antiarrhythmic drugs(1). However, preclinical studies using non-cardiac cells and non-human animal models may not replicate the physiology of human atrial cardiomyocytes or predict patient efficacy and safety.
Here we outline our results from studies to validate human induced pluripotent stem cell-derived atrial cardiomyocytes (hiPSC-ACMs) generated by Axol Bioscience.
Manual patch-clamp technique was used to evaluate channel pharmacology using cells transiently transfected with wild-type and V434L mutant channel.
The HESI Cardiac Safety Committee present results from an international ion channel research study that assessed the variability of hERG data generated using automated patch clamp platforms (QPatch 48, Qube 384 and the SyncroPatch 384i) across four different labs.