Development and validation of a Qube automated patch clamp hERG assay at physiological temperatures

Poster Description

The development of Automated Patch Clamp (APC) technology over the last 20 years has
transformed the research and development process for identifying novel drugs for ion channel targets. Furthermore, it has been widely implemented in cardiac safety pharmacology screening by pharma and contract research organisations.

The adoption of APC as a screening tool has gathered pace over the last 10 years, which may
in part be attributed to the introduction of the Comprehensive in Vitro Proarrhythmia Assay
initiative (CiPA and JiCSA in Japan). Several published studies have confirmed that the high
quality potency data derived from APC screening can be inserted into in silico models of human ventricular action potentials to accurately predict proarrhythmic risk.

Most commercially available APC cardiac safety assays have historically been performed at room temperature. However, it is widely acknowledged that temperature can affect the hERG potency of certain agents (e.g. erythromycin, sotalol), which underlies the basis of why the FDA recommend performing GLP hERG studies at physiological temperatures. Therefore, an APC assay performed at physiological temperatures will benefit from the combination of greater throughput with enhanced sensitivity for compounds that exhibit temperature dependent inhibition.

Download
Recommended Publications
Latest Publications
Assessing the Variability of hERG Data Generated Using a Mock Action Potential Waveform and Automated Patch Clamp Platforms

The HESI Cardiac Safety Committee present results from an international ion channel research study that assessed the variability of hERG data generated using automated patch clamp platforms (QPatch 48, Qube 384 and the SyncroPatch 384i) across four different labs.

Using high-throughput automated patch clamp electrophysiology to identify novel TREK-1 modulators in an animal venom library

We developed a high-throughput, electrophysiological assay of TREK-1 function to identify novel modulators. The assay was optimized to identify both activators and inhibitors, providing comprehensive mechanistic data for high value, limited supply screening libraries, such as the venom fraction library used in this study (Targeted Venom Discovery Array, T-VDA, Venomtech, UK).

View All
Metrion Biosciences

Let’s work together

If you have any questions or would like to discuss your specific assay requirements, we will put you directly in touch with a member of our scientific team. Contact us today to discover more.
Contact us for a quote or discussion
Metrion Biosciences is a contract research organisation (CRO) specialising in high-quality preclinical drug discovery services.
magnifier
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram