We have developed a robust high-throughput automated electrophysiology assay using a monoclonal CHO-hNav1.9 cellular reagent suitable for fully supporting a Nav1.9 discovery program.
The FDA’s Comprehensive in vitro Proarrythmia Assay (CiPA) initiative aims to provide a thorough preclinical cardiac safety profile of new chemical entities that enables prediction of human clinical proarrhythmia risk. To allow the successful utilisation of commercial human iPSC-derived cardiomyocytes (iPSC-CM) as models of human CM in the CiPA safety paradigm, their biophysical and pharmacological profile needs to be fully characterised. Here we will highlight our work to assess the utility of Axiogenesis vCor.4U iPSC-CM for CiPA-relevant cardiotoxicity screening.
We have developed a robust high-throughput automated electrophysiology assay using a monoclonal CHO-hNav1.9 cellular reagent suitable for fully supporting a Nav1.9 discovery program.
Metrion and Sophion present findings that determine whether other insoluble salts can act as seal enhancers and how these solution pairs affect the biophysical properties and pharmacology of the investigated ion channels.