Filters

 

Resource Type
Development of an impedance-based screening assay for cardiac safety and cardiotoxicity detection in stem cell-derived cardiomyocytes

Cardiac toxicity remains the leading cause of new drug safety side-effects. Current preclinical cardiac safety assays rely on in vitro cell-based ion channel assays and ex vivo and in vivo animal models⁽¹⁾. These assays provide an indication of acute risk but they do not always predict the effect of chronic compound exposure, as recently seen with oncology drugs. Therefore, new assays are required to characterise chronic structural and functional effects in human cells earlier in drug discovery. Impedance-based technology can provide more accurate chronic cardiotoxicity measurements in an efficient manner using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

Read More
Investigating the correlation between thallium flux and automated patch-clamp for ion channel activators to prioritise screening outputs

Ion channels play a key role in regulating resting membrane potential and cell excitability and are attractive targets for therapeutic intervention.
Thallium (Tl+) flux assays, which measure the flow of Tl+ through potassium channels, offer a high throughput method for the identification of potassium channel activators. However, these assays are a surrogate for channel function and it is important to have an appropriate panel of orthogonal and translational electrophysiology assays in place to confirm activity at the channel of interest.

Read More
Using new in vitro cardiac ion channel assays and in silico models to predict proarrhythmic risk with automated patch clamp data

The FDA’s Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is designed to remove the over-reliance on hERG data to predict human clinical cardiac risk⁽¹⁾, with recent results suggesting that inclusion of additional cardiac ion channels and assays (e.g. peak and late Nav1.5, Cav1.2, dynamic hERG⁽²⁾) improve risk predictions of in silico action potential models⁽¹⁾. The CiPA working groups currently use a mixture of manual and automated patch clamp (APC) platform data, but future CiPA drug screening will likely rely on APC data.

Read More
New CiPA cardiac ion channel cell lines and assays for in vitro proarrhythmia risk assessment

New cardiac safety testing guidelines are being finalised, as part of the FDA’s Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, which aim to remove the over-reliance on screening against the hERG channel by expanding the panel to include hNav1.5, hCav1.2, hKv4.3/KChiP2.2, hKir2.1 and hKv7.1/KCNE1 human cardiac ion channels. In addition, the CiPA working groups have recently identified two additional in vitro assays required for in silico models to reliably predict proarrhythmia. The first is a ‘late’ sodium current assay, as inhibition of persistent inward current can affect repolarisation and mitigate proarrhythmia (e.g. ranolazine). The second assay quantifies the degree of drug trapping in the hERG channel using the Milnes voltage protocol⁽¹⁾, which can improve the prediction of proarrhythmic risk⁽²⁾.

Read More
Metrion Biosciences is a contract research organisation (CRO) specialising in high-quality preclinical drug discovery services.
magnifier
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram