Rescue of defective CFTR (dF508) is enhanced by targeting the ubiquitin proteasomal system

Poster Description

The dF508 mutation represents the most common cause underlying cystic fibrosis. The resultant misfolding of the nascent cystic fibrosis transmembrane regulator (CFTR) protein and its subsequent proteasomal degradation lead to a deficiency in functional CFTR channels and Cl- efflux at the apical cell membrane in ducts throughout the body (Veit et al. 2016). Small molecule drugs have been identified that rectify this protein misfolding (‘correctors’) and facilitate channel opening (‘potentiators’), thereby restoring CFTR-mediated Cl- efflux at the apical cell membrane and providing clinical improvement (Hanrahan et al. 2017).

Nevertheless, enhanced efficacy remains a key research goal, and evidence indicates that this could be achieved by combining correctors/potentiators with modulators of the ubiquitin proteasomal system (UPS) that regulates CFTR protein degradation (Borgo et al. 2022). There is growing interest in the development of novel treatments that utilise this dual-target approach; we therefore set out to demonstrate that we could:

  1. Measure currents elicited by wild-type (WT) CFTR in transiently transfected
    CHO-K1 cells using automated patch clamp (APC) electrophysiology.
  2. Use the APC platform to confirm efficacy of CFTR correctors (VX-809,
    VX-445/VX-661) and a potentiator (VX-770) in CHO-K1 cells transiently
    transfected with dF508 CFTR.
  3. Develop a 384-well halide-sensitive YFP assay for assessment of corrector
    efficacy in HEK293 cells transiently transfected with dF508 CFTR.
  4. Use the YFP assay to determine if modulators of the UPS (bortezomib, TAK-243)
    enhance the efficacy of the CFTR corrector VX-809.
Download
Recommended Publications
Latest Publications
Assessing the variability of hERG data generated using a mock action potential waveform and automated patch clamp platforms

The HESI Cardiac Safety Committee present results from an international ion channel research study that assessed the variability of hERG data generated using automated patch clamp platforms (QPatch 48, Qube 384 and the SyncroPatch 384i) across four different labs.

Using high-throughput automated patch clamp electrophysiology to identify novel TREK-1 modulators in an animal venom library

We developed a high-throughput, electrophysiological assay of TREK-1 function to identify novel modulators. The assay was optimized to identify both activators and inhibitors, providing comprehensive mechanistic data for high value, limited supply screening libraries, such as the venom fraction library used in this study (Targeted Venom Discovery Array, T-VDA, Venomtech, UK).

View All
Metrion Biosciences

Let’s work together

If you have any questions or would like to discuss your specific assay requirements, we will put you directly in touch with a member of our scientific team. Contact us today to discover more.
Contact us for a quote or discussion
Metrion Biosciences is a contract research organisation (CRO) specialising in high-quality preclinical drug discovery services.
magnifier
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram