Filters

 

Resource Type
Development of an impedance-based screening assay for cardiac safety and cardiotoxicity detection in stem cell-derived cardiomyocytes

Cardiac toxicity remains the leading cause of new drug safety side-effects. Current preclinical cardiac safety assays rely on in vitro cell-based ion channel assays and ex vivo and in vivo animal models⁽¹⁾. These assays provide an indication of acute risk but they do not always predict the effect of chronic compound exposure, as recently seen with oncology drugs. Therefore, new assays are required to characterise chronic structural and functional effects in human cells earlier in drug discovery. Impedance-based technology can provide more accurate chronic cardiotoxicity measurements in an efficient manner using human induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs).

Read More
Investigating the correlation between thallium flux and automated patch-clamp for ion channel activators

Ion channels play a key role in regulating resting membrane potential and cell excitability and are attractive targets for therapeutic intervention.
Thallium (Tl+) flux assays, which measure the flow of Tl+ through potassium channels, offer a high throughput method for the identification of potassium channel activators. However, these assays are a surrogate for channel function and it is important to have an appropriate panel of orthogonal and translational electrophysiology assays in place to confirm activity at the channel of interest.

Read More
Using new in vitro cardiac ion channel assays and in silico models to predict proarrhythmic risk with automated patch clamp data

The FDA’s Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative is designed to remove the over-reliance on hERG data to predict human clinical cardiac risk⁽¹⁾, with recent results suggesting that inclusion of additional cardiac ion channels and assays (e.g. peak and late Nav1.5, Cav1.2, dynamic hERG⁽²⁾) improve risk predictions of in silico action potential models⁽¹⁾. The CiPA working groups currently use a mixture of manual and automated patch clamp (APC) platform data, but future CiPA drug screening will likely rely on APC data.

Read More
Development and validation of ASIC1a ligand-gated ion channel drug discovery assays on automated patch-clamp platforms (Collaboration with Nanion Technologies)

Acid-sensing ion channels (ASICs) are proton-gated ion channels which are highly sensitive to extracellular acidosis and are permeable to cations1, predominantly Na+. To date, six different ASIC subunits (1a, 1b, 2a, 2b, 3 and 4) encoded by four genes have been identified.

Read More
vCor.4U™ Ventricular Enriched Cardiomyocytes: Pharmacological Characterization Utilizing Manual Patch Clamp

Metrion Biosciences independent analysis of the spontaneous and pacing stability of vCor.4UTM and their predictive response to selective pharmacological agents.

Read More
New CiPA cardiac ion channel cell lines and assays for in vitro proarrhythmia risk assessment

New cardiac safety testing guidelines are being finalised, as part of the FDA’s Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative, which aim to remove the over-reliance on screening against the hERG channel by expanding the panel to include hNav1.5, hCav1.2, hKv4.3/KChiP2.2, hKir2.1 and hKv7.1/KCNE1 human cardiac ion channels. In addition, the CiPA working groups have recently identified two additional in vitro assays required for in silico models to reliably predict proarrhythmia. The first is a ‘late’ sodium current assay, as inhibition of persistent inward current can affect repolarisation and mitigate proarrhythmia (e.g. ranolazine). The second assay quantifies the degree of drug trapping in the hERG channel using the Milnes voltage protocol⁽¹⁾, which can improve the prediction of proarrhythmic risk⁽²⁾.

Read More
An overview of Metrion Biosciences

Metrion Biosciences’ CEO Dr Andrew Southan presents an overview of Metrion Biosciences, highlighting the company’s vision, expertise and services. December 10th, 2020.

Read More
The Nav1.5 late current in WT and Nav1.5 ΔKPQ mutant channels: An automated patch-clamp LQT3 electrophysiological assay

The cardiac late Na+ current (late INa) generates persistent inward currents throughout the plateau phase of the ventricular action potential and is an important determinant of repolarisation rate, EADs and arrythmia risk. As inhibition of late INa can offset drug effects on hERG and other repolarising K+ conductances it is one of the key cardiac channels in the Comprehensive in vitro Proarrythmia Assay CiPA panel being developed by the FDA to improve human clinical arrythmia risk assessment.

Read More
Designing multiple assay protocols for ligand-gated ion channels using the stacked-tip feature on the Patchliner and SP384i platforms

Marc Rogers (Metrion CSO) presents a talk at the Nanion Virtual User Meeting 2020 entitled “Designing multiple assay protocols for ligand-gated ion channels using the stacked-tip feature on the Patchliner and SP384i platforms”. 14th October 2020.

Read More
Ion channel discovery – partnering to access specialized expertise

Stevens, E. B and Wright, P. D Future Drug Discovery, 2020.

Read More
1 4 5 6 7 8 12
Metrion Biosciences is a contract research organisation (CRO) specialising in high-quality preclinical drug discovery services.
magnifier
linkedin facebook pinterest youtube rss twitter instagram facebook-blank rss-blank linkedin-blank pinterest youtube twitter instagram