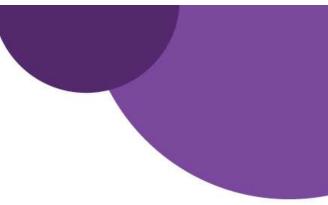


A Clinically Translatable hiPSC Cardiomyocyte Model to Predict QTc and QRS Cardiac Risk

Steve Jenkinson

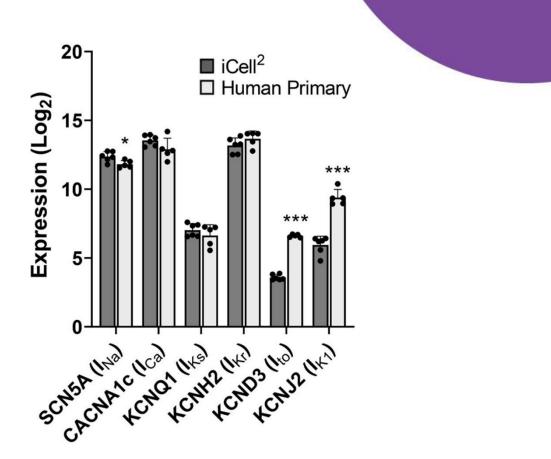

24th September 2024

hiPSC Cardiomyocytes in Defining CV Risk Introduction

- hiPSC-CMs are now routinely used in industry to assess CV effects of novel compounds
 - Functional endpoints Contractility
 - Electrophysiological endpoints QTc/QRS risk assessment
- Importance noted by regulators resulting in change in ICH guidelines
 - Driven initially by CiPA initiative
 - Formalized by inclusion in revised ICH S7B Q&As
 - hiPSC-CM data can be used to support a Thorough QT (TQT) waiver application
- Key requirement of any hiPSC-CM assay is an understanding of its translation to the clinic

hiPSC Cardiomyocytes in Defining CV Risk Introduction

- Presentation describes a high throughput hiPSC-CM model that can
 - Predict exposures of a novel compound that would be associated with a 10 ms change in clinical QTc interval
 - Define the probability of QRS prolongation risk
 - Assess general CV toxicity liability
 - Acutely (30 min) and chronic (24 h) endpoints examined
 - Assay performed in serum free conditions

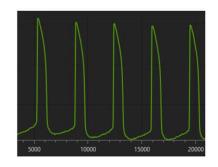


Cell System

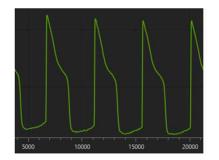
iCell² cardiomyocytes

(FUJIFILM Cellular Dynamics Inc.)

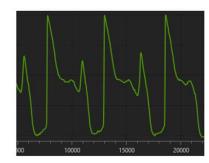
 Key ion channels involved in cardiac AP generation show similar expression to purified human ventricular cardiomyocytes

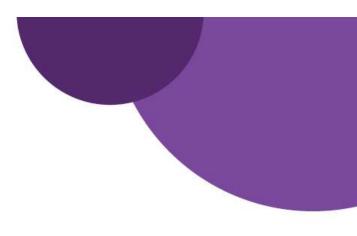


Kilfoil et al. (2021) Eur. J. Pharmacol. (PMID: 34678241)


hiPSC Cardiomyocytes in Defining CV Risk The Technology

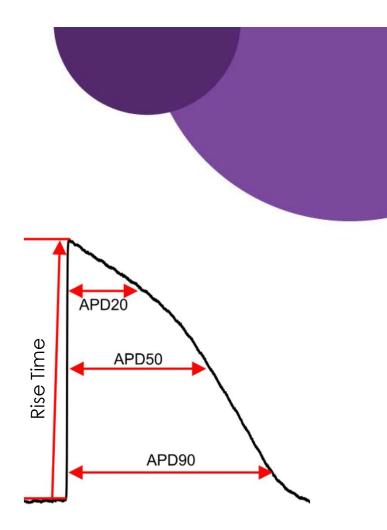
Action potential recordings from intrinsically paced hiPSC-CMs

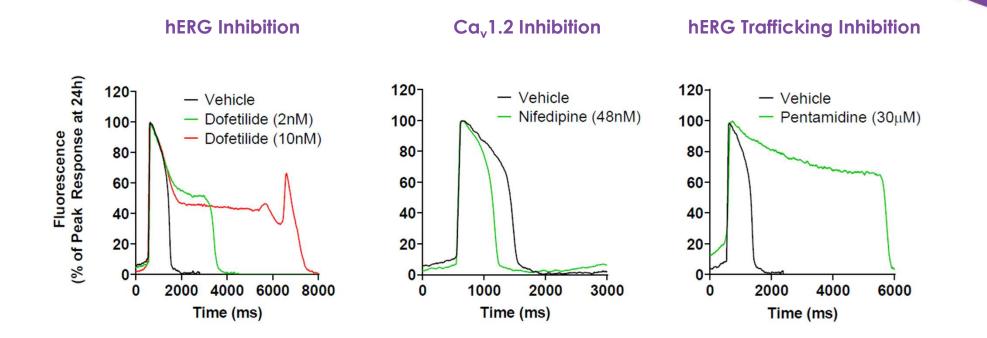

- Volta Fast Optical Reader (Lumencor Inc.)
- Utilizes voltage sensitive membrane dye (BeRST)
- Simultaneous reads 96 well plate at 10,000 Hz
- Recordings equivalent in quality to patch clamp


Vehicle

AP Prolongation

Early After Depolarizations

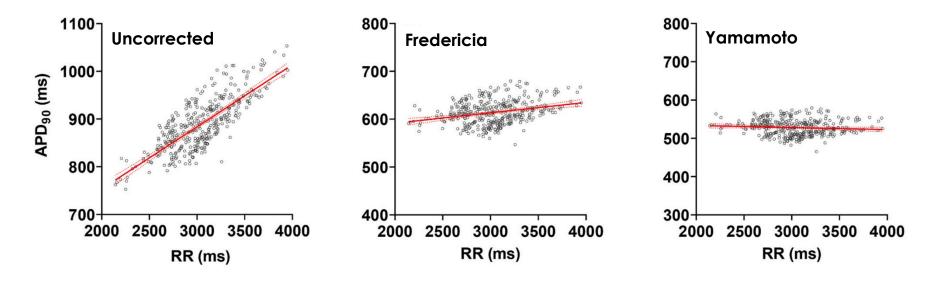



Assay Endpoints

Concentration-response curves for multiple endpoints

- 10-point concentration response curves
- Endpoints measured
 - Action potential duration (APD)
 - Rise time
 - Beat rate
- Acute (30 min) and chronic (24 h) measurements
- Protein/serum free assay

Example Data

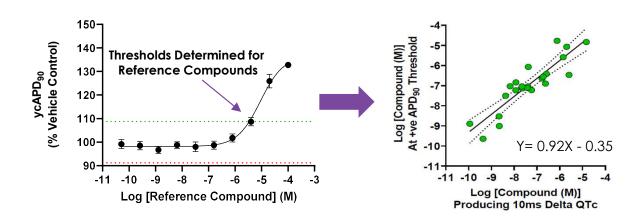


Kilfoil et al. (2021) Eur. J. Pharmacol. (PMID: 34678241)

hiPSC Cardiomyocytes in Defining CV Risk Rate Corrected APD₉₀

APD₉₀ rate correction

- Yamamoto correction (ycAPD₉₀) is optimal method for hiPSC-CMs
- ycAPD $_{90}$ is a surrogate of clinical QTc



Kilfoil et al. (2021) Eur. J. Pharmacol. (PMID: 34678241)

Predicting Clinical QTc Risk Using hiPSC-CMs

hiPSC Cardiomyocytes in Defining CV Risk Prediction of Clinical QTc

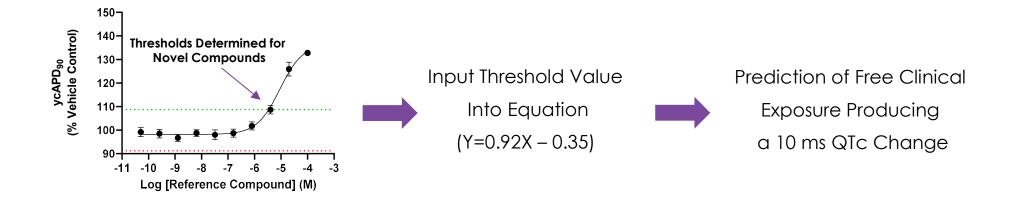
- Ability to determine QTc risk was assessed using a series of reference compounds
 - 23 QTc positive reference compounds with available clinical data
- The analysis compared
 - The concentration associated with hiPSC-CM APD₉₀ threshold value
 - 3x Vehicle Std Dev
 - Free clinical exposure producing 10 ms QTc change

Bepridil* Mesoridazine Sotalol*	
Cisapride* Moxifloxacin Terfenadine*	
Citalopram Odansetron* Terodiline	
Dofetilide* Procainamide Thioridizine	
Droperidol Quinidine* Tolterodine	
E4031 Quinine Vandetanib	
Halofantrine Ranolazine*	

Reference Compounds

Ibutilide*

Azimilide*

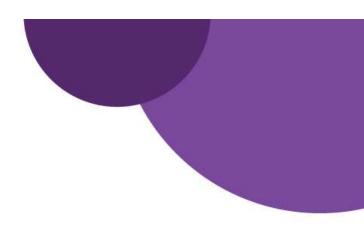

*CiPA 28 compound

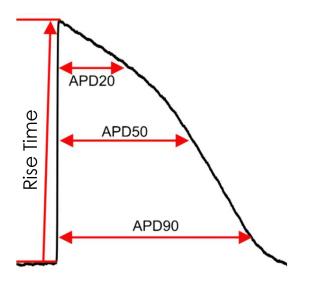
Ribociclib

Kilfoil et al. (2021) Eur. J. Pharmacol. (PMID: 34678241)

Prediction of Clinical QTc

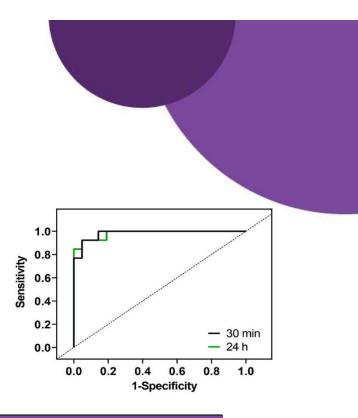
Ability to predict the free clinical exposure associated with a 10 ms change in QTc for novel compounds


- Predictivity confirmed using a 4-fold cross validation analysis
- hiPSC-CM data available for an additional 43 reference compounds (66 in total)
 - Including all CiPA-28 compounds


Assessing the Probability of Clinical QRS Risk Using hiPSC-CMs

Probability of Clinical QRS Liability

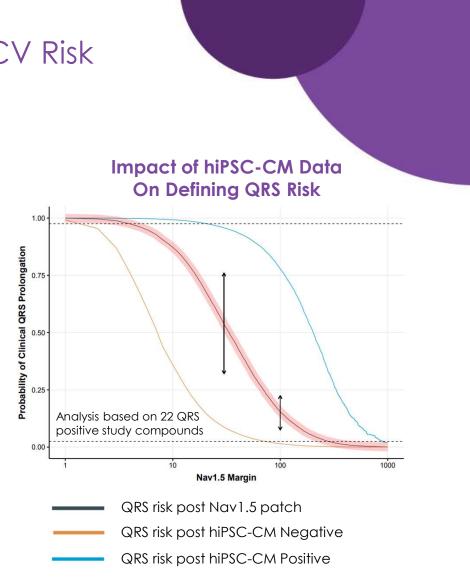
- Action Potential Rise Time is associated with Nav1.5 channel activity
- $Na_v 1.5$ block is associated with QRS prolongation in the clinic
- hiPSC-CM assay utilizes Rise Time to assess clinical QRS risk
- Available clinical QRS data less defined than for QTc
 - Clinical data used in analysis
 - Clinician defined effect on QRS (Binary Yes/No)
 - Free clinical exposure associated with finding
 - Stem cell data used in analysis
 - Rise Time threshold concentration



Probability of Clinical QRS Liability

Performed ROC analysis to define hiPSC-CM/clinical data association

- 22 QRS positive / 12 QRS negative compounds
- Compared QRS effect (Yes/No) versus ratio of stem cell rise time threshold concentration versus free clinical exposure associated with finding


Incubation	AUROC (95% CI)	Sensitivity (95% CI)	Specificity (95% CI)	Cut Point	N Value
30 min	0.98 (0.95, 1.01)	0.92 (0.64, 1.00)	0.95 (0.76, 1.00)	33.0	34
24 h	0.98 (0.95, 1.02)	0.92 (0.64, 1.00)	0.95 (0.76, 1.00)	56.4	34

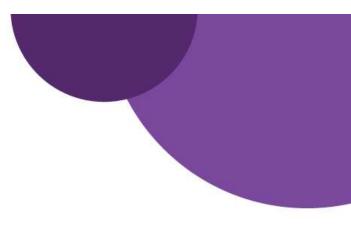
Kilfoil et al. (2021) Eur. J. Pharmacol. (PMID: 34678241)

Probability of Clinical QRS Liability

Defining QRS probability

- QRS probability at a clinical exposure equivalent to
 - hiPSC-CM Rise Time threshold concentration
 - 74 86 %
 - 33-fold (30 min) or 56-fold (24 h) lower than Rise
 Time threshold concentration
 - 1.2 2.4%
 - Analysis assumes Nav1.5 prevalence of
 - 12.7 23.5%

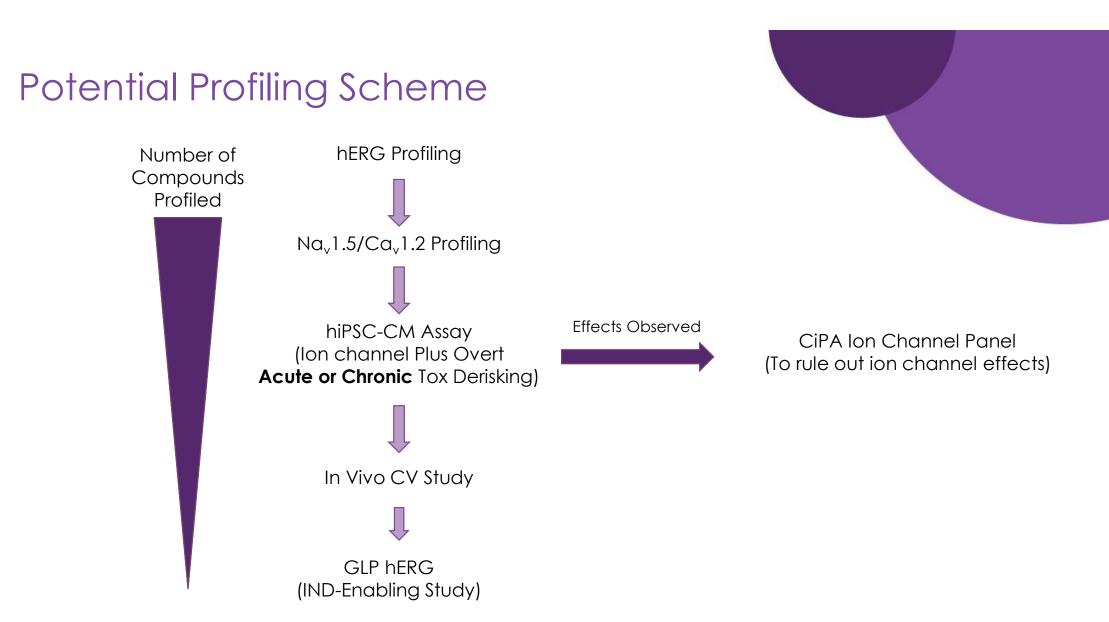
Case Study


Case Study

- Compound ion channel profile
 - hERG IC₅₀ = ~20 μ M
 - Na_v1.5 IC₅₀ = ~115 μ M
 - $Ca_v 1.2$ $IC_{50} = ~280 \,\mu M$
- QTc and QRS prolongation observed in the clinic
 - Free clinical exposure ~1 μM
- QRS liability was unexpected based on Na_v1.5 patch clamp data
 - hiPSC predicted 10 ms change in QTc plus QRS risk around 1 µM free exposure
- Further analysis suggests that Nav1.5 block had components of state, use/rate dependency
- Holistic hiPSC-CM model was able to predict effects missed in routine ion channel profiling

- hiPSC-CM model is valuable in assessing CV risk
 - Ability to predict exposure associated with a 10 ms QTc change in the clinic
 - Assess probability of clinical QRS risk and associated exposure
 - Also valuable in assessing long term general toxicity
- Provide insight into potential mechanism of CV effects (hERG, Na_v1.5, Ca_v1.2)
- Assessment of acute (30 min) or chronic (24 h) effects of novel compounds
- Assay is valuable in assessing CV liabilities of novel compounds in a holistic integrated system

Questions?


Visit us at Booth 203

Contact us: Steve Jenkinson VP Drug Discovery and Safety

steve.jenkinson@metrionbiosciences.com

Backup Slides

