

Metrion Biosciences: the ion channel specialists

Utility of human iPSC-derived cardiomyocytes for preclinical safety assays and disease modelling

Sarah Williams, PhD

23 May 2018

www.metrionbiosciences.com

Applications of human iPSC-derived cardiomyocytes

- Human induced pluripotent stem cell-derived cardiomyocytes (iPSC-CM) can be differentiated from healthy or diseased donors
- Many applications of iPSC-CM including:
 - Study of channelopathies e.g. long QT syndromes
 - Development of patient-specific pharmacology
 - Stem cell therapies

met

- Drug screening and preclinical safety assessment
- To successfully utilise iPSC-CM as a model system they need thorough functional characterisation

Karakikes et al., Circulation Research. 2015;117:80-88

Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative

- CiPA initiative is a regulatory proposal sponsored by USA, European, and Japanese safety bodies to augment current cardiac safety testing regimes
- The scientific proposal for CiPA involves 'four pillars'

• Metrion have established assays for CiPA pillars 1 - 3

http://cipaproject.org

Contents

- 1. Establishing Axol iPSC-CM as a model system
- 2. Electrophysiological validation of ventricular iPSC-CM
- 3. Electrophysiological validation of atrial iPSC-CM
- 4. Summary

Establishing Axol's iPSC-CM as model systems

Role of potassium currents in cardiac arrhythmias. Europace. 2008;10(10):1133-1137

met

- Electrophysiological characterisation of channel expression
 - Gold-standard manual patch clamp
- Three core cardiac currents
 - I_{Na} (Na_v1.5)
 - I_{Ca,L} (Ca_v1.2)
 - I_{Kr} (hERG)
 - Present in both chambers and essential for cardiomyocyte action potentials
- Two chamber specific currents
 - I_{KACh} (K_{ir}3.1/K_{ir}3.4)
 - I_{Kur} (K_V1.5)
 - Functional expression only observed in human atrial cardiomyocytes

Contents

- 1. Establishing Axol iPSC-CM as a model system
- 2. Electrophysiological validation of ventricular iPSC-CM
- 3. Electrophysiological validation of atrial iPSC-CM
- 4. Summary

Ventricular cardiomyocytes

Applications of ventricular iPSC-CM at Metrion

- Preclinical cardiac safety screening CiPA
- Profiling compound effects in a translational human model system
- Disease modelling

Aims of electrophysiological characterisation

- 1. Determine control properties of Axol ventricular iPSC-CM
- 2. Confirm the functional expression of three core cardiac currents \cdot I_{Na} (Na_V1.5), I_{Ca,L} (Ca_V1.2), and I_Kr (hERG)

Europace. 2008;10(10):1133-1137

- 3. Confirm the absence of two chamber specific currents
 - + I_{KACh} (K_ir3.1/K_ir3.4) and I_{Kur} (K_v1.5)

Ventricular action potential characteristics

Α	Spontaneous	В		AP parameter	Spontaneous (N = 38)	Evoked 1 Hz (N = 31)
				MDP (mV)	-66.2 ± 0.9	-71.2 ± 1.9
		0mV		dV/dt _{max} (V/s)	24.0 ± 2.8	19.5 ± 3.6
0 mV				APA (mV)	115.4 ± 1.4	118.9 ± 2.3
				APD20 (ms)	274.3 ± 11.1	203.4 ± 7.0
		N 1		APD50 (ms)	421.6 ± 14.9	366.0 ± 10.6
20 m				APD90 (ms)	532.7 ± 14.8	547.5 ± 12.1
< <u>2 s</u>		200r	ms	Frequency (Hz)	0.26 ± 0.03	1

- Suitable for recording of spontaneous & evoked activity (0.2 1 Hz)
- Good maximum diastolic potential ~ -71 mV
- Upstroke velocity of ~ 20 V/s
- Consistent APD90 ~ 550 ms

Expression of core cardiac currents

- Confirmed functionality of core cardiac currents in Axol ventricular iPSC-CM
 - Expected effects of three reference compounds on evoked action potentials
 - (A) Lidocaine slowed the upstroke velocity by \sim 50 %
 - (B) Nifedipine decreased all APD values
 - (C) E-4031 prolonged APD90 by ~30 % but did not trigger EADs at 1 Hz pacing

entricular

-P S

Generation of arrhythmic events

- No early after-depolarisation (EAD) events were observed at 1 Hz pacing
- But, 100 nM E-4031 resulted in further prolongation and early after-depolarisation (EAD) events at lower pacing rates

• Confirms arrhythmic capability of Axol ventricular iPSC-CM

Confirmation of predominantly ventricular phenotype

Pharmacological tools targeted against atrial specific currents show minimal effects

(A) I_{Kur}

- Small effect (6 % prolongation) of 4-AP suggesting low level functional expression of K_v1.5 channels
- K_v1.5 protein is expressed in the human ventricle, but no functional activity has been detected (Mays et al., 1995 J Clin Invest)
- Common feature of the majority of human iPSC-CM tested at Metrion

(B) I_{KACh}

- Carbachol (I_{KACh} activator) is expected to shorten APD and hyperpolarise the membrane potential
- Carbachol resulted in a 3 % decrease of APD20

Suggests majority of cells have a ventricular phenotype

11

Contents

- 1. Establishing Axol iPSC-CM as a model system
- 2. Electrophysiological validation of ventricular iPSC-CM
- 3. Electrophysiological validation of atrial iPSC-CM
- 4. Summary

Atrial cardiomyocytes

Europace. 2008;10(10):1133-1137

Applications of atrial iPSC-CM at Metrion

- Disease modelling atrial fibrillation
- Profiling compound effects in a translational human model

Aims of electrophysiological characterisation

- 1. Determine control properties of Axol atrial iPSC-CM
- 2. Confirm the functional expression of three core cardiac currents \cdot I_{Na} (Na_V1.5), I_{Ca,L} (Ca_V1.2), and I_{Kr} (hERG)
- 3. Confirm the presence of two chamber specific currents
 - I_{KACh} (K_{ir}3.1/K_{ir}3.4) and I_{Kur} (K_V1.5)

Atrial iPSC-CN

Atrial action potential characteristics

•	Spontanoous	D	Evokod (1 Hz)			
Α		D		AP parameter	Spontaneous (N = 31)	Evoked 1 Hz (N = 28)
				MDP (mV)	-73.6 ± 0.8	-73.0 ± 0.9
		0		dV/dt _{max} (V/s)	44.6 ± 3.4	30.9 ± 3.8
0 mV		0 mv		APA (mV)	120.2 ± 1.0	126.3 ± 1.5
				APD20 (ms)	252.4 ± 6.3	235.2 ± 5.6
				APD50 (ms)	338.0 ± 6.7	352.1 ± 4.8
20 m		81		APD90 (ms)	419.0 ± 7.0	468.7 ± 11.4
< <u> </u>		B		Frequency (Hz)	0.28 ± 0.01	1

- Suitable for recording of spontaneous & evoked activity (0.5 2 Hz)
- Good maximum diastolic potential ~ -73 mV
- Upstroke velocity of ~ 31 V/s
- Consistent APD90 ~ 470 ms

Atrial iPSC-CM

Expression of core cardiac currents

- Confirmed functionality of core cardiac currents in Axol atrial iPSC-CM
 - Expected effects of three reference compounds on evoked action potentials
 - (A) Lidocaine slowed the upstroke velocity by \sim 50 %
 - (B) Nifedipine decreased all APD values
 - (C) E-4031 prolonged APD90 by ~125 % at 0.5 Hz pacing
 - 15

Confirmation of atrial phenotype

Pharmacological tools targeted against atrial specific currents showed significant effects

(A) I_{Kur}

 4-AP resulted in significant APD20 prolongation (14 %) suggesting functional expression of K_v1.5 channels

- Carbachol (I_{KACh} activator) is expected to shorten APD and hyperpolarise the membrane potential
- Carbachol resulted in a 6 % decrease of APD20

Suggests cells have an atrial phenotype

Further confirmation of atrial phenotype

Further confirmation of atrial phenotype using spontaneous action potential recordings

(A) I_{Kur}

- 4-AP resulted in characteristic prolongation of APD values
- ~15 % increase in APD20, 50 and 90
- Corresponding decrease in firing rate
- (B) I_{KACh}
 - Carbachol resulted in characteristic negative chronotropic effects and shortening of APDs
 - 32 % decreasing in firing rate
 - ~10 % decrease in APD20 and 50

Further suggests cells have a atrial phenotype

Contents

- 1. Establishing Axol iPSC-CM as a model system
- 2. Electrophysiological validation of ventricular iPSC-CM
- 3. Electrophysiological validation of atrial iPSC-CM
- 4. Summary

Summary

- Axol iPSC-CM express functional ion channels which are key components of human cardiomyocyte action potentials
 - Both ventricular and atrial cells have functional $I_{\text{Na}}, I_{\text{Ca},\text{L}},$ and I_{Kr}
- Chamber specific pharmacology was determined and this confirmed the ventricular and atrial phenotypes of each cell line
 - Atrial iPSC-CM show functional ${\rm I}_{\rm KACh}$ and ${\rm I}_{\rm kur}$
- Full characterisation of commercial human iPSC-CM allows Metrion to provide a range of validated assays
 - Proarrhythmic risk assessment as part of our integrated range of CiPA-ready assays
 - Profiling of compound effects in a translational human system
 - Characterisation of human iPSC-CM cell lines

Acknowledgments

- Metrion Biosciences
 - Saïd El-Haou
 - John Ridley
 - Louise Webdale
 - Kathy Sutton
 - Robert Kirby
- Axol Biosciences
 - Zoe Nilsson
 - Yichen Shi

metrion

• This project received funding from the Eurostars-2 joint program with co-funding from the European Union Horizon 2010 research and innovation program

20

Metrion Biosciences: the ion channel specialists

For enquiries please contact: info@metrionbiosciences.com

